Secobarbital attenuates excitotoxicity but potentiates oxygen-glucose deprivation neuronal injury in cortical cell culture.
نویسندگان
چکیده
We examined the effects of secobarbital and other sedative-hypnotic barbiturates on the neuronal death induced by exposure to excitatory amino acids or deprivation of oxygen or glucose in mouse cortical cell cultures. N-Methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate, and kainate toxicities were attenuated in a concentration-dependent fashion by high concentrations of secobarbital or thiopental. Antagonism of NMDA toxicity was not overcome by increasing NMDA concentration and not mimicked by gamma-aminobutyrate. Despite these antiexcitotoxic actions, secobarbital exacerbated the neuronal death induced by deprivation of either glucose alone or oxygen and glucose together; death induced by oxygen deprivation alone was little affected. Thiopental and methohexital also increased oxygen-glucose deprivation injury. A possible explanation for this injury potentiation was provided by the observation that secobarbital enhanced the cellular ATP depletion induced by combined oxygen-glucose deprivation. Deleterious effects on ATP production may counterbalance the protective effects of barbiturates under some conditions.
منابع مشابه
The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملExtracellular alkalinity exacerbates injury of cultured cortical neurons.
BACKGROUND AND PURPOSE We have previously shown that extracellular acidity protects cultured fetal murine neocortical neurons from glutamate toxicity and combined oxygen-glucose deprivation injury, an action at least in part mediated by reduction in N-methyl-D-aspartate receptor activation. We now investigate the effect of extracellular alkalinity on both glutamate neurotoxicity and injury due ...
متن کاملDipyridamole increases oxygen-glucose deprivation-induced injury in cortical cell culture.
BACKGROUND AND PURPOSE Adenosine transport inhibitors attenuate ischemic central neuronal damage in vivo, but the locus of this protective action is presently unknown. To help address the question of whether adenosine transport inhibitors have a protective effect directly on brain parenchyma, we tested the effect of the adenosine transport inhibitor dipyridamole on neuronal loss induced by oxyg...
متن کاملQuercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures.
The possible role of quercetin, a naturally occurring plant flavonoid, in protecting against oxygen-glucose deprivation (OGD)-, excitotoxins-, and free radical-induced neuronal injury in mouse cortical cell cultures was investigated. Pre- and co-treatment with quercetin (100 microM) inhibited 50 min OGD-, 20 microM N-methyl-D-aspartate (NMDA)-, and 50 microM kainate-induced neurotoxicity by 36,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 13 5 شماره
صفحات -
تاریخ انتشار 1993